
 1

HTTP Session Replication for Tomcat Web-server

(May 2012)

Chris Simoes1, Alex Bednarczyk1, Sponsoring Professor: Vijay Garg
1Software Engineering Master’s Program at the University of Texas at Austin

Session replication is an important problem facing modern webservers. Amazon’s S3 data store provides for an excellent

mechanism to allow webservers to store their session externally to allow for easy session migration between webservers. We have built

an implementation of Apache Tomcat that uses Amazon S3 to backup all of its sessions. We will discuss our design and discoveries,

and then we investigate the overhead performance we will incur by using Amazon S3’s service as an external data store instead of

utilizing Apache Tomcat’s default session replication techniques.

I. INTRODUCTION

 TTP is the Hypertext Transfer Protocol that is the

foundation for the World Wide Web. HTTP functions

as a request-response protocol allowing web servers to

connect with clients such as web browsers. The web servers

will return via HTTP the HTML files that make up all of the

web pages on the Internet. HTTP is a stateless protocol,

meaning that every request it handles is independent of all

other requests made to the same web server. This allows the

server to not have to retain state information about all of the

requests made to it. In principle this simplifies server design

because there is no need to dynamically allocate storage to

deal with multiple requests in process. Also if a client dies in

mid-transaction, no clean up should be necessary. However

this has a big downside in practical applications where we

want to know if a user is returning to our website.

 To track users using HTTP various methods of session

management have been created. The most common utilizes a

cookie that is stored on the client browser to identify the client

with each request. This also add the added overhead to the

server of needing to track which cookie belongs to which user

and allocating memory space to track information about each

user. The server will pass to the client a cookie with a

“session ID” that is then also stored in the web servers internal

memory. This works well for development environments and

small servers that are not required to run 24 hours a day, 7

days a week. For modern, robust web application that power

sites such as Amazon’s store a single web server is not

sufficient. To power a large site, 10’s if not 100’s of web

servers will be needed. If all of these web servers store their

sessions in internal memory this presents a new problem.

 What happens when one of these servers crashes? What

happens when a server needs to be taken down for service? A

simple answer has been to stop taking on any new sessions,

and to allow existing sessions to logout or timeout before we

shutdown the server. Unfortunately for modern busy

websites, this can take hours or even days to complete. What

we would really like, it to be able to immediately direct web

traffic from one web server to another one without any

disruption to the user’s experience, and without having to wait

hours or even days.

 In order to accomplish this we have to allow the sessions on

our web servers to “migrate” from one server to the next. We

have to stop storing the session information only in internal

memory on a single server. We have studied 2 approaches to

this problem, and this paper will discuss them both. Our 2

researched solutions are to store our sessions:

• CENTRAL DATA STORE THAT IS HIGHLY RELIABLE AND

FAULT TOLERANT

• DISTRIBUTED ON OUR OTHER WEBSERVERS

Below we will discuss our research and findings by

comparing and contrasting these 2 approaches. We will also

H

 2

present our performance measurements of each approach,

followed by our next steps in our research.

II. ENVIRONMENT

The Apache Tomcat project is an open source web server

that is used to power some of the largest websites on the

World Wide Web. We chose to do our research using the

Apache Tomcat web server for several reasons. First, it is an

open source project written in Java that will allow us to easily

make modifications and investigate behaviors. Second, it has

a large community around it that provides data and support to

our research. During our initial investigation, it was very easy

to find others that had our same goal in mind who were open

and interested in sharing their work in performing session

replication with Tomcat. Third, Tomcat already has a built in

“high availability” mode (HA) that would allow us to compare

with our approach of using a centralized data store.

Our Tomcat instances were all installed on Linux Ubuntu

servers running in the Amazon EC2 (Elastic Computing)

cloud. The Amazon cloud allowed us to easily create new

servers to simulate a cluster of computers, and copy server

configurations from one machine to the next. Also Amazon’s

EC2 cloud was preferable over other cloud providers since we

intended to use Amazon’s Dynamo distributed hash table for

our centralized data store tests.

III. DYNAMO

 Amazon outlined their proprietary implementation of a

highly available key-value store they named “Dynamo” [1].

Amazon needed a massively scaled key-value data store that

provided high reliability and performance to run their huge

ecommerce store. Dynamo is designed to provide an easy to

use interface for the programmer that allows a guaranteed

level of service. The actual implementation of Dynamo is

hidden from the developer, and it is built on a distributed

network of servers spread across the country that provide to

the user an “always-on” appearance.

In Janaury 2012, Amazon announced the beta release of

their DynamoDB web service. So our initial research we

based on Amazon’s DynamoDB web service. Unfortunately,

it quickly became apparent to us that there were some

significant drawbacks to successfully using DynamoDB as our

central data store. DynamoDB is marketed as a NoSQL

database service, but in reality it only stores information as

strings. This is undesirable since our session information will

be most naturally represented as an array of bytes. A further

limitation is that the value of any given column is limited to

64,000 bytes of information. This is also undesirable since

our sessions can be an arbitrary sized array of bytes that could

likely be larger than 64,000 bytes. Upon learning of these

limitations we abandoned consideration of DynamoDB for our

key-value store.

We discovered that the correct web service to use is

Amazon’s S3 (Simple Storage Service). While Amazon S3’s

documentation does not specifically state that it is using

Amazon’s Dynamo technology, it does state that:

 “Amazon S3 provides a simple web services interface that

can be used to store and retrieve any amount of data, at any

time, from anywhere on the web. It gives any developer

access to the same highly scalable, reliable, secure, fast,

inexpensive infrastructure that Amazon uses to run its own

global network of web sites.” [2]

Upon further inspection it became clear to us that Amazon’s

S3 service was the correct technology for us to build on. It

was released in March of 2006, and it allows for writing,

reading and deleting of key value pairs where the value can be

from 1 byte to 5 terabytes in size. It allows for an unlimited

number of objects to be stored, and it provides a 99.9%

monthly uptime guarantee. As of March 2012, Amazon S3 is

currently storing over 905 billion objects [3]. For these

reasons we chose Amazon S3 as our centralized data store.

IV. CENTRAL DATA STORE THAT IS HIGHLY RELIABLE AND

FAULT TOLERANT

Our main body of research was to see if we could

externalize Apache Tomcat’s session management to a

 3

centralized data store. Before we began writing any code, we

first researched if anyone else had already tried this

approach.

A. memcached

We discovered that no one had used Amazon S3 to

externalize Apache Tomcat’s session management, however

we did find an interesting project called “memcached-session-

manager” [4] that externalized session management. It used

memcached [5], which is an open source, high performance,

distributed memory object caching system. It provides an in-

memory key-value store for small chunks of arbitrary data.

While similar to our needs, memcached had short comings in

comparison to Amazon S3’s service. Memcached expects

clients to understand which server to send data to, and which

servers to fetch data from. In this sense memcached is not a

centralized data store. Also memcached is built to use

physical memory, and it is not ideal for persisting data on

machines that may need to restart. Thus the durability of our

data is in question.

The “memcached-session-manager” project did provide us

with an excellent starting point for our research. The project

was first released in October 2009 by Martin Grotzke, and it

has subsequently has numerous updates and improvements. It

supports Apache Tomcat 6 and 7, and it handle many special

cases such as sticky sessions and server failover. We

investigated the code thoroughly and decided to follow their

design for integrating with Apache Tomcat.

B. Implementation

Our implementation is straightforward in theory. We would

refactor the memcached-session-manager project to use

Amazon S3 as a data store instead of memcached. In practice

we learned a lot about the inner workings of Apache Tomcat

and session management to complete this work.

Before we could begin, we first had to download and

investigate the source code for Tomcat. We studied to see

how does Tomcat load track and store sessions? We also

investigated different approaches for integrating with Tomcat.

Tomcat has a “ManagerBase” class [6] that we extended to

interface with Tomcat’s session management. This class

controls at a high level session persistence and storage. We

then implemented a class called DynamoSessionService, that

was responsible for actually finding and storing our sessions.

It also provides the methods for serializing and deserializing

our session objects. For serialization we chose to use Java’s

default serialization API, and this requires that all objects

placed into our web server’s session implement the

“java.io.Serailizable” interface. For faster performance other

serialization libraries exist. We also extended Tomcat’s

“StandardSession” class with our own version called

“DynamoBackupSession” that tracks changes to our session so

we can know if it is dirty in relation to our in memory cache.

This wrapper class allows us to track all the extra attributes we

need to in order to implement our externalized data store.

Apache Tomcat uses “Valves” to represent a component

that will be inserted into the processing pipeline of a web

request. We implemented our own valve called

“SessionTrackerValve” that will monitor anytime a session is

modified in internal memory. Our design that we copied from

memcached-session-manager will only persist our session to

Amazon S3 if the session has changed. If the session is

accessed but not changed, then we continue to use our valid

copy in our internal memory cache. This optimization is

critical to minimize the number of external calls our web

server makes to our external system.

In our first pass of refactoring the memcached-session-

manager code, we changed all references using the

memcached client to instead write and read sessions to the

local disk. This allowed us to investigate and debug problems

quickly of how do sessions get loaded and invalidated from

memory. During this phase we learned that all backing up of

session information happens asynchronously through a task

service. So we wrote our own “BackupSessionTask” to

handle the storing of sessions to disk. Once we got file system

backups working correctly we built a stand-alone Amazon S3

client to store data in S3. This is the S3Client class in the

org.simoes.session.s3 package. The S3Client is responsible

for authenticating our program with Amazon Web services. It

 4

is also responsible for providing us with a simple interface for

putting and getting key value pairs from our external data

store on S3. Upon completion of this component we

integrated our S3Client with the core Tomcat codebase, and

successfully ran Tomcat while it’s sessions externally

replicated to Amazon S3.

We next investigated the performance characteristics of our

implementation. Obviously the big advantage of external

session storage is the ability to easily change the web server a

client is connecting to with no downtime. The big

disadvantage is the latency that is potentially introduced by

needing to make serialization calls over the network to load

and store session information. We wanted to study this

potential limitation to see how much latency we would need to

trade for portability. In order to perform a fair performance

assessment we also wanted to establish a baseline. We chose

to also research using the “high availability” feature built into

Tomcat that allows the web server to replicate its sessions to

other Tomcat web servers on the network.

V. DISTRIBUTED ON OUR OTHER WEBSERVERS

Tomcat comes bundled with the ability to replicate sessions

to other Tomcat webservers. The class Tomcat uses to

perform this replication is the “SimpleTcpCluster” class [7].

It is a cluster implementation using a simple multicast

protocol, and it is responsible for setting up a cluster and

sending and receiving messages to other servers. The

SimpleTcpCluster configuration enables all-to-all session

replication that will track when a session changes, and then

send the modified session to all other servers. This is a

common configuration used, and we hoped that our

implementation would perform close to as well as this

reference implementation, but with the added benefits of a

centralized store for the session information.

One down side of the SimpleTcpCluster approach is that it

complicates your network architecture. While this

implementation works fine for 2-4 servers, as you expand to

10’s or even 100’s of servers the network overhead grows

linearly with the number of servers. This wastes a lot of

network bandwidth, and introduces many unnecessary

messages. A better approach recommended by Apache

Tomcat is to group web servers into clusters behind a load

balancer.

TOMCAT RECOMMENDED CONFIGURATION

Like our Dynamo implementation, Tomcat’s

SimpleTcpCluster also assumes that all of the objects added to

your web server’s session implement the java.io.Serializable

interface.

VI. PERFORMANCE ANALYSIS

A. Sample Programs

In order to test the performance of our Amazon S3 backed

version of Apache Tomcat, we needed a sample servlet

program that would store values in our session. We created a

SampleLogin program that allowed a user to login to a

website. It stores the user name and password in the session

along with the current time for each request of the servlet. We

added the time attribute so that the session’s contents would

change with every page reload, thus triggering the session to

be replicated externally. We used our SampleLogin program

to test both the Amazon S3 backed version and the default

Apache Tomcat SimpleTcpCluster version.

B. Amazon Cloud

To test our Amazon S3 backed Tomcat implementation we

launched 2 modified Tomcat webservers on the same server,

where one used port 8080 and one used port 8081.

 5

• http://ec2-23-22-79-203.compute-

1.amazonaws.com:8080/SampleLogin/index.html

• http://ec2-23-22-79-203.compute-

1.amazonaws.com:8081/SampleLogin/index.html

Both of these instances of Apache Tomcat would access

Amazon S3 to load and store their sessions. In our

development environment we saw a noticeable lag introduced

the first time an S3Client was initialized. This is due to the

time it takes to setup connections and verify credentials. In

order to minimize this lag, Amazon recommends that

programmers reuse the S3Client class, instead of instantiating

a new one each time. We followed this design

recommendation to improve performance. We also chose to

locate our test server on the Amazon EC2 network for

performance reasons. The lag in upload speeds from a home

computer using a cable modem is noticeable when you are

measuring in the 100’s ms. The Amazon EC2 cloud provides

impressive network response times and throughput

particularly for calls between Amazon services (in our case

between Amazon EC2 and Amazon S3).

For our SimpleTcpCluster configuration we launched 2

servers in Amazon EC2 with the exact same configurations.

We then modified their configuration files so that they would

broadcast session changes to each other. We again suspected

that these 2 servers would benefit from being collocated on the

Amazon cloud infrastructure. Since these were 2 separate

boxes we struggled with showing that the sessions were

replicating properly between the 2 servers. By observing the

log files for the 2 servers it was clear that many network calls

were occurring between the servers, but modern browsers

discouraged us from trying the hack the session id. We

ultimately deemed that since this was our base line, and also

due to the extensive use of caching by the default Tomcat

implementation, using time to create a way to hack setting the

session was not a top priority. We instead focused on our

Apache Tomcat backed by S3 implementation tests, and wrote

tests to ensure the default Tomcat implementation did have to

store and replicate many session changes.

C. JMeter

 To automate our testing we chose to use the open source

project JMeter [8]. JMeter is designed to load test functional

behavior and measure performance. JMeter is used by the

Apache family of projects for load testing of Tomcat and the

Apache web server. JMeter however is not a web browser,

and it is not well suited to test web pages that contain

Javascript or require a lot of client side processing. Thus we

kept our SampleLogin test program free of any of these

dependencies so we could focus on testing the performance

of servers storing their session externally.

 For our Apache Tomcat web server backed by Amazon S3

tests, we configured JMeter’s cookie manager to enable

session tracking. We then pointed JMeter at our server

listening on port 8080. JMeter would contact that server,

and pass it a username and password to login. When

Apache processes this request it creates a new session that it

will then store in Amazon S3. For discussion sake, we will

say this session has a session id of “1234”. Then JMeter

would follow the “Click here to stay logged in” link. This

would update the time attribute in session 1234, which

would again trigger Apache Tomcat to backup the session to

Amazon S3. JMeter then goes to the same web server, but

this time instead of using port 8080 it uses port 8081. It

turns out that Apache Tomcat sees this as a request from the

same client so JMeter gets a request for the same session id

of 1234. However, the web server on port 8081 is a

different webserver running in a different JVM from the one

running on port 8080. Our 8081 version of Apache Tomcat

now looks up session id 1234 in it’s local memory, but it

predictably does not find one there. So it then makes a

remote call to Amazon S3 to see if session id 1234 can be

found in our external session store. Session id 1234 is

found, so the 8081 Apache Tomcat web server loads this

session into local memory, and to the user they continue to

access the website uninterrupted even though they are now

being served from a completely different web server.

 This test is performed over 1000 times, and then JMeter

creates a nice plot of the performance. We were encouraged

to find that the average response time was 77ms. As we dug

 6

into this finding we realized this is due to our

implementation caching the changed session in internal

memory and then asynchronously queues up a task to

backup the session to Amazon S3. Below the blue line

represents the load time of each page while the green line

represents the throughput we are achieving. The overall

throughput of our Tomcat version was 761 requests per

minute.

 We also performed the same type of test against our

SimpleTcpCluster default Tomcat setup. This test showed an

average response time of 58ms. Again the blue line represents

the load time of each page while the green line represents the

throughput we are achieving. The overall throughput of the

default Tomcat version was 994 requests per minute.

This was not overly surprising given the fact that we only

had 2 servers running. We would expect this performance to

degrade as we added more servers to a cluster. We also

expected this to perform well given that the code has been

improving for the past 5 years. We would expect that we

could improve our implementation’s performance since we

have so far spent no time on code optimization. Also given

that we are measuring in milliseconds, while the difference of

19ms is statistically meaningful, in the real world this was not

particularly concerning.

VII. FUTURE RESEARCH

 We had several ideas on where our research should next

proceed. While our preliminary analysis was encouraging to

simulate more real world conditions we will need to test our

implementation with larger objects stored in our session. Our

tests stored only a few bytes, while a production web server

would probably store sessions on the order of 100 kilobytes to

even megabytes. We also would like to test our solution on 4

and then 8 servers running concurrently. We suspect that our

implementation will scale better, as it is only bottlenecked by

the ability of Amazon S3 to scale and Amazon boasts that this

scaling problem is effectively solved for S3.

 We would be interested to see how much adding 4, 8 or

even more servers to Apache Tomcat’s default configuration

slows down the servers. Testing on servers outside of

Amazon EC2 would also be a useful data point. Finally we

would like to improve our implementation. While we did

implement the ability to put and get from the Amazon S3

external store, we did not implement the ability to delete or

expire old session values stored there.

VIII. CONCLUSION

 We were very encouraged by the progress we were able to

make on creating a webserver that persisted its sessions to an

external data store. Amazon’s S3 key value store provides a

reliable, scalable, distributed central store that proves to have

very fast response times in the Amazon cloud. Our

implementation was able to service web request in less than

100ms, and this leads us to believe that this is a viable

implementation for modern websites to build upon.

REFERENCES

[1] Dynamo: Amazon's Highly Available Key-value Store. Giuseppe

DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter

 7

Vosshall and Werner Vogels. Proceedings of the 21st ACM Symposium

on Operating Systems Principles 2007, SOSP 2007.

[2] Amazon Simple Storage Service (S3) http://aws.amazon.com/s3/

[3] Amazon Web Serviecs Blog

http://aws.typepad.com/aws/2012/04/amazon-s3-905-billion-objects-

and-650000-requestssecond.html

[4] Memcached-session-manager Project on Google Code

http://code.google.com/p/memcached-session-manager/

[5] Memcached Home Page http://memcached.org/

[6] Tomcat’s ManagerBase class http://tomcat.apache.org/tomcat-7.0-

doc/api/index.html?org/apache/catalina/session/ManagerBase.html

[7] Tomcat Clustering Documentation http://tomcat.apache.org/tomcat-7.0-

doc/cluster-howto.html

[8] Apache JMeer project http://jmeter.apache.org/

